Sabtu, 06 Juni 2015

HUKUM BERNOULI DAN PENERAPAN NYA



HUKUM BERNOULLI DAN PENERAPANNYA
  1. Penemu Hukum Bernoulli
Asas Bernoulli dikemukakan pertama kali oleh Daniel Bernoulli (1700±1782). DanielBernoulli lahir di Groningen, Belanda pada tangga l8 Februari 1700 dalam sebuah keluarga yang hebat dalam bidang matematika. Dia dikatakan memiliki hubungan buruk dengan ayahnya yaitu Johann Bernoulli, setelah keduanya bersaing untuk juara pertama dalam kontes ilmiah di Universitas Paris. Johann, tidak mampu menanggung malu harus bersaing dengan anaknya sendiri. Johann Bernoulli juga menjiplak beberapa idekunci dari buku Daniel, Hydrodynamica dalam bukunya yang berjudul Hydraulica yang diterbitkan lebih dahulu dari buku Hydrodynamica. Dalam kertas kerjanya yang berjudul Hydrodynamica, Bernoulli menunjukkan bahwa begitu kecepatan aliran fluida meningkat maka tekanannya justru menurun. Pada saat usia sekolah, ayahnya, Johann Bernoulli, mendorong dia untuk belajar bisnis. Namun, Daniel menolak, karena dia ingin belajar matematika. Ia kemudian menyerah pada keinginan ayahnya dan bisnis dipelajarinya. Ayahnya kemudian memintanya untuk belajar dikedokteran, dan Daniel setuju dengan syarat bahwa ayahnya akan mengajarinya matematika secara pribadi.
B. Prinsip Bernoulli
Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip  ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.
Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).
1. Aliran Tak-termampatkan
Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:
Description: Untitled
di mana:
v = kecepatan fluida
g = percepatan gravitasi bumi
h = ketinggian relatif terhadapa suatu referensi
p = tekanan fluida
ρ = densitas fluida
Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:
• Aliran bersifat tunak (steady state)
• Tidak terdapat gesekan
2. Aliran Termampatkan
Aliran termampatkan adalah aliran fluida yang dicirikan dengan berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida termampatkan adalah: udara, gas alam, dll. Persamaan Bernoulli untuk aliran termampatkan adalah sebagai berikut:
Description: Untitled
Hukum Bernoulli menyatakan bahwa jumlah dari tekanan ( p ), energi kinetik per satuan volum (1/2 PV^2 ), dan energi potensial per satuan volume (ρgh) memiliki nilai yang sama pada setiap titik sepanjang suatu garis arus.
Dalam bagian ini kita hanya akan mendiskusikan bagaimana cara berfikir Bernoulli sampai menemukan persamaannya, kemudian menuliskan persamaan ini. Akan tetapi kita tidak akan menurunkan persamaan Bernoulli secara matematis.
Kita disini dapat melihat sebuah pipa yang pada kedua ujungnya berbeda dimanaujung pipa 1 lebih besar dari pada ujung pipa 2.
C. Penerapan Hukum Bernoulli
  1. 1.       Efek Venturi
Selain teorema Torricelli, persamaan Bernoulli juga bisa diterapkan pada kasus khusus lain yakni ketika fluida mengalir dalam bagian pipa yang ketinggiannya hampir sama (perbedaan ketinggian kecil). Untuk memahami penjelasan ini, amati gambar di bawah.
Description: Untitled
Pada gambar di atas tampak bahwa ketinggian pipa, baik bagian pipa yang penampangnya besar maupun bagian pipa yang penampangnya kecil, hampir sama sehingga diangap ketinggian alias h sama. Jika diterapkan pada kasus ini, maka persamaan Bernoulli berubah
menjadi :
Description: Untitled
Ketika fluida melewati bagian pipa yang penampangnya kecil (A2), maka laju fluida bertambah (ingat persamaan kontinuitas). Menurut prinsip Bernoulli, jika kelajuan fluida bertambah, maka tekanan fluida tersebut menjadi kecil. Jadi tekanan fluida di bagian pipa yang sempit lebih kecil tetapi laju aliran fluida lebih besar.
Ini dikenal dengan julukan efek Venturi dan menujukkan secara kuantitatif bahwa jika laju aliran fluida tinggi, maka tekanan fluida menjadi kecil. Demikian pula sebaliknya, jika laju aliran fluida rendah maka tekanan fluida menjadi besar.
2. Tabung Pitot
Tabung Pitot adalah alat ukur yang kita gunakan untuk mengukur kelajuan gas / udara. Perhatikan gambar di bawah.
Lubang pada titik 1 sejajar dengan aliran udara. Posisi kedua lubang ini dibuat cukup jauh dari ujung tabung pitot, sehingga laju dan tekanan udara di luar lubang sama seperti laju dan tekanan udara yang mengalir bebas. Dalam hal ini, v1 = laju aliran udara yang mengalir bebas (ini yang akan kita ukur), dan tekanan pada kaki kiri manometer (pipa bagian kiri) = tekanan udara yang mengalir bebas (P1).
Description: Untitled
Lubang yang menuju ke kaki kanan manometer, tegak lurus dengan aliran udara. Karenanya, laju aliran udara yang lewat di lubang ini (bagian tengah) berkurang dan udara berhenti ketika tiba di titik 2. Dalam hal ini, v2 = 0. Tekanan pada kaki kanan manometer sama dengan tekanan udara di titik 2 (P2).
Ketinggian titik 1 dan titik 2 hampir sama (perbedaannya tidak terlalu besar) sehingga bisa diabaikan. Ingat ya, tabung pitot juga dirancang menggunakan prinsip efek venturi. Mirip seperti si venturi meter, bedanya si tabung petot ini dipakai untuk mengukur laju gas alias udara. Karenanya, kita tetap menggunakan persamaan efek venturi. Sekarang kita oprek persamaannya :
Description: Untitled
Ini persamaan yang kita cari. Persamaan ini digunakan untuk menghitung laju aliran gas alias udara menggunakan si tabung pitot.
3. Penyemprot Racun Serangga
Penyemprot Racun Serangga hampir sama prinsip kerjanya dengan penyemprot parfum. Jika pada penyemprot parfum Anda menekan tombol, maka pada penyemprot racun serangga Anda menekan masuk batang penghisap.
Description: Untitled
Ketika bola karet diremas, udara yang ada di dalam bola karet meluncur keluar melalui pipa 1. Karenanya, udara dalam pipa 1 mempunyai laju yang lebih tinggi. Karena laju udara tinggi, maka tekanan udara pada pipa 1 menjadi rendah. Sebaliknya, udara dalam pipa 2 mempunyai laju yang lebih rendah. Tekanan udara dalam pipa 2 lebih tinggi. Akibatnya, cairan parfum didorong ke atas. Ketika si cairan parfum tiba di pipa 1, udara yang meluncur dari dalam bola karet mendorongnya keluar.
Biasanya lubang berukuran kecil, sehingga parfum meluncur dengan cepat ingat persamaan kontinuitas, kalau luas penampang kecil, maka fluida bergerak lebih cepat. Sebaliknya, kalau luas penampang pipa besar, maka fluida bergerak pelan.
4. Cerbong asap
Pertama, asap hasil pembakaran memiliki suhu tinggi alias panas. Karena suhu tinggi, maka massa jenis udara tersebut kecil. Udara yang massa jenisnya kecil mudah terapung alias bergerak ke atas. Alasannya bukan cuma ini, Prinsip bernoulli juga terlibat dalam persoalan ini. Kedua, prinsip bernoulli mengatakan bahwa jika laju aliran udara tinggi maka tekanannya menjadi kecil, sebaliknya jika laju aliran udara rendah, maka tekanannya besar. Ingat bahwa bagian atas cerobong berada di luar ruangan. Ada angin yang niup di bagian atas cerobong, sehingga tekanan udara di sekitarnya lebih kecil. Di dalam ruangan tertutup tidak ada angin yang niup, sehingga tekanan udara lebih besar. Karenanya asap digiring ke luar lewat cerobong. (udara bergerak dari tempat yang tekanan udaranya tinggi ke tempat yang tekanan udaranya rendah).

5.  Gaya Angkat Sayap Pesawat Terbang
Gaya Angkat Sayap Pesawat Terbang juga merupakan salah satu contoh Hukum Bernoulli.
Pada dasarnya, ada empat buah gaya yang bekerja pada sebuah pesawat terbang yang sedang mengangkasa .
1. Berat Pesawat yang disebabkan oleh gaya gravitasi Bumi
2. Gaya angkat yang dihasilkan oleh kedua sayap pesawat
3. Gaya ke depan yang disebabkan oleh mesin pesawat
4. Gaya hambatan yang disebabkan oleh gerakan udara.
Description: Untitled
Bagian depan sayap dirancang melengkung ke atas. Udara yang ngalir dari bawah berdesak2an dengan temannya yang ada di sebelah atas. Mirip seperti air yang ngalir dari pipa yang penampangnya besar ke pipa yang penampangnya sempit. Akibatnya, laju udara di sebelah atas sayap meningkat. Karena laju udara meningkat, maka tekanan udara menjadi kecil. Sebaliknya, laju aliran udara di sebelah bawah sayap lebih rendah, karena udara tidak berdesak2an (tekanan udaranya lebih besar). Adanya perbedaan tekanan ini, membuat sayap pesawat didorong ke atas. Karena sayapnya nempel dengan badan si pesawat, maka si pesawat ikut2an terangkat.
6.  Tikus juga tahu prinsip Bernoulli
Perhatikan gambar di bawah ini gambar lubang tikus dalam tanah. Tikus juga tahu prinsip  bernoulli. Si tikus tidak mau mati karena sesak napas, karenanya tikus membuat 2 lubang pada ketinggian yang berbeda. Akibat perbedaan ketinggian permukaan tanah, maka udara berdesak-desakan dengan temannya (bagian kanan). Mirip seperti air yang mengalir dari pipa yang penampangnya besar menuju pipa yang penampangnya kecil. Karena berdesak-desakan maka laju udara meningkat (Tekanan udara menurun).
Description: Untitled
Karena ada perbedaan tekanan udara, maka udara dipaksa mengalir masuk melalui lubang tikus. Udara mengalir dari tempat yang tekanan udara-nya tinggi ke tempat yang tekanan udaranya rendah.

__________________________________________________________________________________
HUKUM ARCHIMEDES
Hukum Archimedes adalah sebuah hukum tentang prinsip pengapungan diatas benda cair yang ditemukan oleh seorang ilmuwan yang bernama Archimedes. Beliau adalah seorang matematikawan, astronom, filsuf, fisikawan, dan insinyur berkebangsaan Yunani.
Archimedes juga digolongkan sebagai salah satu ahli matematika kuno dan merupakan yang terbaik dan terbesar di jamannya. Perhitungan dari Archimedes yang akurat tentang lengkungan bola di jadikan konstanta matematika untuk Pi atau π.
A. Bunyi Hukum Archimedes
Archimedes menemukan hukum pada sebuah peristiwa yang disebut dengan Hukum Archimedes yang berbunyi “apabila sebuah benda, sebagian atau seluruhnya terbenam kedalam air, maka benda tersebut akan mendapat gaya tekan yang mengarah keatas yang besarnya sama dengan berat air yang dipindahkan oleh bagian benda yang terbenam tersebut” Misalnya air mempunyai volume tertentu, jika sebuah benda dimasukkan ke dalam air tersebut, maka permukaan air akan terdesak atau naik. Hal ini karena adanya gaya ke atas yang sering disebut gaya Archimedes.
B. Prinsip Archimedes
Ketika kita menimbang batu di dalam air, berat batu yang terukur pada timbangan pegas menjadi lebih kecil dibandingkan dengan ketika kita menimbang batu di udara (tidak di dalam air). Massa batu yang terukur pada timbangan lebih kecil karena ada gaya apung yang menekan batu ke atas. Efek yang sama akan dirasakan ketika kita mengangkat benda apapun dalam air. Batu atau benda apapun akan terasa lebih ringan jika diangkat dalam air. Hal ini bukan berarti bahwa sebagian batu atau benda yang diangkat hilang sehingga berat batu menjadi lebih kecil, tetapi karena adanya gaya apung. Arah gaya apung ke atas, alias searah dengan gaya angkat yang kita berikan pada batu tersebut sehingga batu atau benda apapun yang diangkat di dalam air terasa lebih ringan.
C. Rumus Hukum Archimedes
Gaya apung adalah selisih antara berat benda di udara dengan berat benda dalam zat cair.
Description: Untitled
Mengapung, tenggelam dan melayang
Syarat benda mengapung : Massa jenis benda harus lebih kecil dari massa zat cair
Syarat benda melayang : Massa jenis benda harus sama dengan dari massa zat cair
Syarat benda tenggelam : Massa jenis benda harus lebih besar dari massa zat cair
D. Hukum Turunan Archimedes
Berdasarkan bunyi dan rumus hukum Archimede diatas, suatu benda yang akan terapung, tenggelam atau melayang didalam zat cair tergantung pada gaya berat dan gaya keatas. Maka dari itu, berdasarkan hukum diatas, terciptalah 3 hukum turunan dari hukum Archimedes yang berbunyi:
1. Benda akan terapung jika massa jenis benda yang dimasukan kedalam air lebih kecil dari massa jenis zat cairnya
2. Benda akan melayang jika massa jenis benda yang dimasukan kedalam air sama dengan massa jenis zat cairnya
3. Benda akan tenggelam jika massa jenis benda yang dimasukan kedalam air lebih besar dari pada massa jenis zat cairnya.
E. Penerapan Hukum Archimedes
Penerapan hukum archimedes dalam kehidupan sehari-hari, setelah mengerti dan memahami bunyi hukum Archimedes, banyak ilmuwan yang pada akhirnya terinspirasi oleh hukum tersebut dan diaplikasikan dalam kehidupan sehari-hari. Contoh penerapan dan aplikasi hukum Archimedes dalam kehidupan sehari-hari sangat banyak dan beragam. Bukan hanya yang berhubungan langsung dengan benda cair tapi juga berhubungan dengan udara. Berikut ini contoh penerapan dan aplikasi hukum Archimedes dalam dunia nyata.
1. Teknologi perkapalan seperti Kapal laut dan kapal Selam
Teknologi perkapalan merupakan contoh hasil aplikasi ata penerapan hukum Archimedes yang paling sering kita jumpai dalam kehidupan sehari-hari. Kapan laut terbuat dari besi atau kayu yang di buat berongga dibagian tengahnya. Rongga pada bagian tengah kapal laut ini bertujuan agar volume air laut yang dipindahkan badan kapal besar. Aplikasi ini bedasarkan bunyi hukum Archimedes dimana gaya apung suatu benda sebanding dengan banyaknya air yang dipindahkan. Dengan menggunakan prinsip tersebut maka kapal laut bisa terapung dan tidak tenggelam.
Berbeda dengan kapal selam yang memang di kehendaki untuk bisa tenggelam di air dan juga mengapung di udara. Untuk itu pada bagian tertentu dari kapal selam di persiapkan sebuah rongga yang dapat menampung sejumlah air laut yang bisa di isi dan di buang sesuai kebutuhan. Saat ingin menyelam, rongga tersebut di isi dengan air laut sehingga berat kapal selam bertambah. Sedangkan saat ingin mengapung, air laut dalam rongga tersebut di keluarkan sehingga bobot kapal selam menjadi ringan dan mampu melayang di permukaan.
2. Alat pengukur massa jenis (Hidrometer)
Hidrometer adalah sebuah alat yang digunakan untuk mengukur massa jenis zat cair. Hidrometer merupakan contoh penerapan hukum Archimedesdalam kehidupan sehari-hari yang paling sederhana. Cara kerja hidrometer merupakan realisasi bunyi hukum archimede, dimana suatu benda yang dimasukan kedalam zat cair sebagian atau keseluruhan akan mengalami gaya keatas yang besarnya sama dengan berat zat cair yang dipindahkan.Jika hidrometer dicelupkan ke dalam zat cair, sebagian alat tersebut akan tenggelam. Makin besar massa jenis zat cair, Makin sedikit bagian hidrometer yang tenggelam. Seberapa banyak air yang dipindahkan oleh hidrometer akan tertera pada skala yang terdapat pada alat hidrometer.
3. Jembatan Poton
Jembatan poton adalah sebuah jembatan yang terbuat dari kumpulan drum-drum kosong yang melayang diatas air dan diatur sedemikian rupa sehingga menyerupai sebuah jembatan. Jembatan poton disebut juga jembatan apung. Untuk bisa di jadikan sebagai jembatan, drum-drum tersebut harus berada dalam kondisi kosong dan tertutup rapat sehinggaudara di dalam drum tidak dapat keluar dan air tidak dapat masuk kedalam. Dengan cara itu berat jenis drum dapat diminimalkan sehingga bisa terapung di atas permukaan air.
4. Teknologi Balon Udara
Balon udara adalah penerapan prinsip Archimedes di udara. Jadi ternyata aplikasi hukum Archinedes tidak hanya berlaku untuk benda cair tetapi juga benda gas. Untuk dapat terbang melayang di udara, balon udara harus diisi dengan gas yang bermassa jenis lebih kecil dari massa jenis udaraatmosfer, sehingga, balon udara dapat terbang karena mendapat gaya keatas, misalnya diisi udara yang dipanaskan. Udara yang dipanaskan memiliki tingkat kerenggangan lebih besar daripada udara biasa. Sehingga masa jenis udara tersebut menjadi ringan.
__________________________________________________________________________________________

FLUIDA
  1. DEFINISI FLUIDA
Fluida adalah zat yang dapat mengalir. Kata Fluida mencakup zat car, air dan gas karena kedua zat ini dapat mengalir, sebaliknya batu dan benda-benda keras atau seluruh zat padat tidak digolongkan kedalam fluida karena tidak bisa mengalir.
  Susu, minyak pelumas, dan air merupakan contoh zat cair. dan Semua zat cair itu dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain. Selain zat cair, zat gas juga termasuk fluida. Zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain.
  Fluida merupakan salah satu aspek yang penting dalam kehidupan sehari-hari. Setiap hari manusia menghirupnya, meminumnya, terapung atau tenggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya dan kapal laut mengapung di atasnya. Demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang diminum dan udara yang dihirup juga bersirkulasi di dalam tubuh manusia setiap saat meskipun sering tidak disadari.
Fluida ini dapat kita bagi menjadi dua bagian yakni:
1.    Fluida statis
2.    Fluida Dinamis
Tapi yang kita bahas dalam makalah ini hanyalah membahas tentang fluida statis ( fluida diam ).
Adapun pengertian dari Fluida Statis adalah fluida yang berada dalam fase tidak bergerak (diam) atau fluida dalam keadaan bergerak tetapi tak ada perbedaan kecepatan antar partikel fluida tersebut atau bisa dikatakan bahwa partikel-partikel fluida tersebut bergerak dengan kecepatan seragam sehingga tidak memiliki gaya geser.
Contoh fenomena fluida statis dapat dibagi menjadi statis sederhana dan tidak sederhana. Contoh fluida yang diam secara sederhana adalah air di bak yang tidak dikenai gaya oleh gaya apapun, seperti gaya angin, panas, dan lain-lain yang mengakibatkan air tersebut bergerak. Contoh fluida statis yang tidak sederhana adalah air sungai yang memiliki kecepatan seragam pada tiap partikel di berbagai lapisan dari permukaan sampai dasar sungai.
Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg. Gaya ini tersebar merata pada seluruh permukaan dasar bejana. Selama cairan itu tidak mengalir (dalam keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah oleh akibat berat cairan dalam kolom tersebut.
  1. SIFAT FISIS FLUIDA
Sifat fisis fluida dapat ditentukan dan dipahami lebih jelas saat fluida berada dalam keadaan diam (statis). Sifat-sifat fisis fluida statis ini di antaranya, massa jenis, tegangan permukaan, kapilaritas, dan viskositas.
1.    Massa Jenis
       Pernahkah Anda membandingkan berat antara kayu dan besi? Benarkah pernyataan bahwa besi lebih berat daripada kayu? Pernyataan tersebut tentunya kurang tepat, karena segelondong kayu yang besar jauh lebih berat daripada sebuah bola besi. Pernyataan yang tepat untuk perbandingan antara kayu dan besi tersebut, yaitu besi lebih padat daripada kayu. Anda tentu masih ingat, bahwa setiap benda memiliki kerapatan massa yang berbeda-beda serta merupakan sifat alami dari benda tersebut. Dalam Fisika, ukuran kepadatan (densitas) benda homogen disebut massa jenis, yaitu massa per satuan volume. Jadi massa jenis adalah pengukuran massa setiap satuan volume benda. Semakin tinggi massa jenis suatu benda, maka semakin besar pula massa setiap volumenya. Massa jenis rata-rata setiap benda merupakan total massa dibagi dengan total volumenya. Sebuah benda yang memiliki massa jenis lebih tinggi (misalnya besi) akan memiliki volume yang lebih rendah daripada benda bermassa sama yang memiliki massa jenis lebih rendah (misalnya air).
Satuan SI massa jenis adalah kilogram per meter kubik (kg·m-3)
Massa jenis berfungsi untuk menentukan zat. Setiap zat memiliki massa jenis yang berbeda. Dan satu zat berapapun massanya berapapun volumenya akan memiliki massa jenis yang sama.
Secara matematis, massa jenis dituliskan sebagai berikut.
  dengan:         = massa (kg atau g),
        V = volume (m3 atau cm3), dan
                        ρ = massa jenis (kg/m3 atau g/cm3).
Jenis beberapa bahan dan massa jenisnya dapat dilihat pada Tabel berikut.
Tabel Massa Jenis atau Kerapatan Massa (Density)
Bahan
Massa Jenis (g/cm3)
Nama Bahan
Massa Jenis (g/cm3)
Air
1,00
Gliserin
1,26
Aluminium
2,7
Kuningan
8,6
Baja
7,8
Perak
10,5
Benzena
0,9
Platina
21,4
Besi
7,8
Raksa
13,6
Emas
19,3
Tembaga
8,9
Es
0,92
Timah Hitam
11,3
Etil Alkohol
0,81
Udara
0,0012
2.      Tegangan permukaan
          Pernahkah kamu melihat sebuah jarum atau silet terapung diatas air? Atau kamu pasti pernah melihat ada nyamuk atau serangga lain dapat berdiri diatas air. Fenomena ini erat kaitannya dengan penjelasan tentang tegangan permukaan.
          Mari kita amati sebatang jarum atau sebuah silet yang kita buat terapung di permukaan air sebagai benda yang mengalami tegangan permukaan. Tegangan permukaan disebabkan oleh interaksi molekul-molekul zat cair dipermukaan zat cair. Di bagian dalam cairan sebuah molekul dikelilingi oleh molekul lain disekitarnya, tetapi di permukaan cairan tidak ada molekul lain dibagian atas molekul cairan itu. Hal ini menyebabkan timbulnya gaya pemulih yang menarik molekul apabila molekul itu dinaikan menjauhi permukaan, oleh molekul yang ada di bagian bawah permukaan cairan.
Sebaliknya jika molekul di permukaan cairan ditekan, dalam hal ini diberi jarum atau silet, molekul bagian bawah permukaan akan memberikan gaya pemulih yang arahnya ke atas, sehingga gaya pemulih ke atas ini dapat menopang jarum atau silet tetap di permukaan air tanpa tenggelam.
       Gaya ke atas untuk menopang jarum atau silet agar tidak tenggelam merupakan perkalian koefisien tegangan permukaan dengan dua kali panjang jarum. Panjang jarum disini adalah permukaan yang bersentuhan dengan zat cair.
          Jadi dapat kita simpulkan bahwa pengertian dari tegangan permukaan adalah kecenderungan permukaan zat cair untuk menegang, sehingga permukaannya seperti ditutupi oleh suatu lapisan elastis.
3.    Kapilaritas
          Tegangan permukaan ternyata juga mempunyai peranan pada fenomena menarik, yaitu kapilaritas. Contoh peristiwa yang menunjukkan kapilaritas adalah minyak tanah, yang dapat naik melalui sumbu kompor. Selain itu, dinding rumah kita pada musim hujan dapat basah juga terjadi karena adanya gejala kapilaritas.
          Untuk membahas kapilaritas, kita perhatikan sebuah pipa kaca dengan diameter kecil (pipa kapiler) yang ujungnya terbuka saat dimasukkan ke dalam bejana berisi air. Kita dapat menyaksikan bahwa permukaan air dalam pipa akan naik. Lain hasilnya jika kita mencelupkan pipa tersebut ke dalam bejana berisi air raksa. Permukaan air raksa dalam tabung akan turun atau lebih rendah daripada permukaan air raksa dalam bejana. Gejala inilah yang disebut dengan gejala kapilaritas.
         Pada kejadian ini, pipa yang digunakan adalah pipa kapiler. Oleh karena itu, gejala kapilaritas adalah gejala naik turunnya zat cair dalam pipa kapiler. Permukaan zat cair yang berbentuk cekung atau cembung disebut meniskus. Permukaan air pada dinding kaca yang berbentuk cekung disebut meniskus cekung, sedangkan permukaan air raksa yang berbentuk cembung disebut meniskus cembung.
          Penyebab dari gejala kapiler adalah adanya adhesi dan kohesi. Kohesi adalah gaya tarik menarik antar molekul yang sama jenisnya. Gaya ini menyebabkan antara zat yang satu dengan yang lain tidak dapat menempel karena molekulnya saling tolak menolak.
sedangkan adhesi adalah gaya tarik menarik antar molekul yang berbeda jenisnya. Gaya ini menyebabkan antara zat yang satu dengan yang lain dapat menempel dengan baik karena molekulnya saling tarik menarik atau merekat.
          Pada gejala kapilaritas pada air, air dalam pipa kapiler naik karena adhesi antara partikel air dengan kaca lebih besar daripada kohesi antar partikel airnya. Sebaliknya, pada gejala kapilaritas air raksa, adhesi air raksa dengan kaca lebih kecil daripada kohesi antar partikel air raksa. Oleh karena itu, sudut kontak antara air raksa dengan dinding kaca akan lebih besar daripada sudut kontak air dengan dinding kaca.
          Kenaikan atau penurunan zat cair pada pipa kapiler disebabkan oleh adanya tegangan permukaan yang bekerja pada keliling persentuhan zat cair dengan pipa.
          Berikut ini beberapa contoh yang menunjukkan gejala kapilaritas dalam kehidupan sehari-hari:
a. Naiknya minyak tanah melalui sumbu kompor sehingga kompor bisa dinyalakan.
b. Kain dan kertas isap dapat menghisap cairan.
c. Air dari akar dapat naik pada batang pohon melalui pembuluh kayu.
          Selain keuntungan, kapilaritas dapat menimbulkan beberapa masalah berikut ini :
Air hujan merembes dari dinding luar, sehingga dinding dalam juga basah.
Air dari dinding bawah rumah merembes naik melalui batu bata menuju ke atas  sehingga dinding rumah lembab.

4.    Viskositas
          Viskositas merupakan pengukuran dari ketahanan fluida yang diubah baik dengan tekanan maupun tegangan. Pada masalah sehari-hari (dan hanya untuk fluida), viskositas adalah “Ketebalan” atau “pergesekan internal”. Oleh karena itu, air yang “tipis”, memiliki viskositas lebih rendah, sedangkan maduyang “tebal”, memiliki viskositas yang lebih tinggi. Sederhananya, semakin rendah viskositas suatu fluida, semakin besar juga pergerakan dari fluida tersebut. Viskositas menjelaskan ketahanan internal fluida untuk mengalir dan mungkin dapat dipikirkan sebagai pengukuran dari pergeseran fluida.
          Seluruh fluida (kecuali superfluida) memiliki ketahanan dari tekanan dan oleh karena itu disebut kental, tetapi fluida yang tidak memiliki ketahanan tekanan dan tegangan disebut fluide ideal.
__________________________________________________________________________________

TEKANAN HIDROSTATIS
Masih ingatkah Anda definisi tekanan? Tekanan adalah gaya yang bekerja tegak lurus pada suatu permukaan bidang dan dibagi luas permukaan bidang tersebut. Secara matematis, persamaan tekanan dituliskan sebagai berikut.
p= F/ A ……….. (1)
dengan:              = gaya (N),
= luas permukaan (m2), dan
= tekanan (N/m2 = Pascal).
Persamaan diatas menyatakan bahwa tekanan berbanding terbalik dengan luas permukaan bidang tempat gaya bekerja. Jadi, untuk besar gaya yang sama, luas bidang yang kecil akan mendapatkan tekanan yang lebih besar daripada luas bidang yang besar. Dapatkah Anda memberikan beberapa contoh penerapan konsep tekanan dalam kehidupan sehari-hari?
Tekanan Hidrostatis adalah tekanan yang terjadi di bawah air. Tekanan hidrostatis disebabkan oleh fluida tak bergerak. Tekanan hidrostatis yang dialami oleh suatu titik di dalam fluida diakibatkan oleh gaya berat fluida yang berada di atas titik tersebut. Jika besarnya tekanan hidrostatis pada dasar tabung adalah p, menurut konsep tekanan, besarnya dapat dihitung dari perbandingan antara gaya berat fluida (F) dan luas permukaan bejana (A).
p= F/A …………(2)
Gaya berat fluida merupakan perkalian antara massa fluida dengan percepatan gravitasi Bumi, ditulis
p= massa x gravitasi bumi / A
Oleh karena = ρ V, persamaan tekanan oleh fluida dituliskan sebagai
p =  ρVg / A……………..(3)
Volume fluida di dalam bejana merupakan hasil perkalian antara luas permukaan bejana (A) dan tinggi fluida dalam bejana (h). Oleh karena itu, persamaan tekanan di dasar bejana akibat fluida setinggi dapat dituliskan menjadi
p=  ρ(Ah) g / A = ρ h g…………(4)

Jika tekanan hidrostatis dilambangkan dengan ph, persamaannya dituliskan sebagai berikut.
ph = ρ gh
………..(5)
 dengan:          ph = tekanan hidrostatis (N/m2),
ρ = massa jenis fluida (kg/m3),
= percepatan gravitasi (m/s2), dan
= kedalaman titik dari permukaan fluida (m).
Semakin tinggi dari permukaan Bumi, tekanan udara akan semakin berkurang. Sebaliknya, semakin dalam Anda menyelam dari permukaan laut atau danau, tekanan hidrostatis akan semakin bertambah. Mengapa demikian? Hal tersebut disebabkan oleh gaya berat yang dihasilkan oleh udara dan zat cair. Anda telah mengetahui bahwa lapisan udara akan semakin tipis seiring bertambahnya ketinggian dari permukaan Bumi sehingga tekanan udara akan berkurang jika ketinggian bertambah. Adapun untuk zat cair, massanya akan semakin besar seiring dengan bertambahnya kedalaman. Oleh karena itu, tekanan hidrostatis akan bertambah jika kedalaman bertambah.
Prinsip tekanan hidrostatis ini digunakan pada alat-alat pengukur tekanan. Alat-alat pengukur tekanan yang digunakan untuk mengukur tekanan gas, di antaranya sebagai berikut.
a. Manometer Pipa Terbuka
Manometer  pipa terbuka adalah alat pengukur tekanan gas yang paling sederhana. Alat ini berupa pipa berbentuk U yang berisi zat cair. Ujung yang satu mendapat tekanan sebesar (dari gas yang hendak diukur tekanannya) dan ujung lainnya berhubungan dengan tekanan atmosfir (p0).
b. Barometer
Barometer raksa ini ditemukan pada 1643 oleh Evangelista Torricelli, seorang ahli Fisika dan Matematika dari Italia. Barometer adalah alat untuk mengukur tekanan udara. Barometer umum digunakan dalam peramalan cuaca, dimana tekanan udara yang tinggi menandakan cuaca bersahabat, sedangkan tekanan udara rendah menandakan kemungkinan badai. Ia mendefinisikan tekanan atmosfir dalam bukunya yang berjudul “A Unit of MeasurementThe Torr” Tekanan atmosfer (1 atm) sama dengan tekanan hidrostatis raksa (mercury) yang tingginya 760 mm. Cara mengonversikan satuannya adalah sebagai berikut.
ρ raksa × percepatan gravitasi Bumi × panjang raksa dalam tabung atau
(13.600 kg/cm3 )(9,8 m/s2)(0,76 m) = 1,103 × 105 N/m2
               Jadi, 1 atm = 76 cmHg = 1,013 × 105 N/m2
c. Pengukur Tekanan Ban
Alat ini digunakan untuk mengukur tekanan udara di dalam ban. Bentuknya berupa silinder panjang yang di dalamnya terdapat pegas. Saat ujungnya ditekankan pada pentil ban, tekanan udara dari dalam ban akan masuk ke dalam silinder dan menekan pegas. Besarnya tekanan yang diterima oleh pegas akan diteruskan ke ujung lain dari silinder yang dihubungkan dengan skala. Skala ini telah dikalibrasi sehingga dapat menunjukkan nilai selisih tekanan udara luar (atmosfer) dengan tekanan udara dalam ban.
_________________________________________________________________________________________
KARAKTERISTIK GAS IDEAL
Gas merupakan satu dari tiga wujud zat dan walaupun wujud ini merupakan bagian tak terpisahkan dari studi kimia, bab ini terutama hanya akan membahasa hubungan antara volume, temperatur dan tekanan baik dalam gas ideal maupun dalam gas nyata, dan teori kinetik molekular gas, dan tidak secara langsung kimia. Bahasan utamanya terutama tentang perubahan fisika, dan reaksi kimianya tidak didisuksikan. Namun, sifat fisik gas bergantung pada struktur molekul gasnya dan sifat kimia gas juga bergantung pada strukturnya. Perilaku gas yang ada sebagai molekul tunggal adalah contoh yang baik kebergantungan sifat makroskopik pada struktur mikroskopik.
a. Sifat gas
Sifat-sifat gas dapat dirangkumkan sebagai berikut.
  1. Gas bersifat transparan.
  2. Gas terdistribusi merata dalam ruang apapun bentuk ruangnya.
  3. Gas dalam ruang akan memberikan tekanan ke dinding.
  4. Volume sejumlah gas sama dengan volume wadahnya. Bila gas tidak diwadahi, volume gas akan menjadi tak hingga besarnya, dan tekanannya akan menjadi tak hingga kecilnya.
  5. Gas berdifusi ke segala arah tidak peduli ada atau tidak tekanan luar.
  6. Bila dua atau lebih gas bercampur, gas-gas itu akan terdistribusi merata.
  7. Gas dapat ditekan dengan tekanan luar. Bila tekanan luar dikurangi, gas akan mengembang.
  8. Bila dipanaskan gas akan mengembang, bila didinginkan akan mengkerut.
Dari berbagai sifat di atas, yang paling penting adalah tekanan gas. Misalkan suatu cairan memenuhi wadah. Bila cairan didinginkan dan volumenya berkurang, cairan itu tidak akan memenuhi wadah lagi. Namun, gas selalu akan memenuhi ruang tidak peduli berapapun suhunya. Yang akan berubah adalah tekanannya.
Alat yang digunakan untuk mengukur tekanan gas adalah manometer. Prototipe alat pengukur tekanan atmosfer, barometer, diciptakan oleh Torricelli.
Tekanan didefinisikan gaya per satuan luas, jadi tekanan = gaya/luas.
Dalam SI, satuan gaya adalah Newton (N), satuan luas m2, dan satuan tekanan adalah Pascal (Pa). 1 atm kira-kira sama dengan tekanan 1013 hPa.
1 atm = 1,01325 x 105 Pa = 1013,25 hPa
Namun, dalam satuan non-SI unit, Torr, kira-kira 1/760 dari 1 atm, sering digunakan untuk mengukur perubahan tekanan dalam reaksi kimia.
b. Volume dan tekanan
Fakta bahwa volume gas berubah bila tekanannya berubah telah diamati sejak abad 17 oleh Torricelli dan filsuf /saintis Perancis Blase Pascal (1623-1662). Boyle mengamati bahwa dengan mengenakan tekanan dengan sejumlah volume tertentu merkuri, volume gas, yang terjebak dalam tabung delas yang tertutup di salah satu ujungnya, akan berkurang. Dalam percobaan ini, volume gas diukur pada tekanan lebih besar dari 1 atm.
Boyle membuat pompa vakum menggunakan teknik tercangih yang ada waktu itu, dan ia mengamati bahwa gas pada tekanan di bawah 1 atm akan mengembang. Setelah ia melakukan banyak percobaan, Boyle mengusulkan persamaan (1) untuk menggambarkan hubungan antara volume V dan tekanan P gas. Hubungan ini disebut dengan hukum Boyle.
PV = k (suatu tetapan) (1)
Penampilan grafis dari percobaan Boyle dapat dilakukan dengan dua cara. Bila P diplot sebagai ordinat dan V sebagai absis, didapatkan hiperbola (Gambar 6.1(a)). Kedua bila V diplot terhadap 1/P, akan didapatkan garis lurus (Gambar 6.1(b)).
Gambar 6.1 hubungan tekana dan volume
(a) Plot hasil percobaan; tekanan vs. volume
(b) Plot hasil percobaan; volume vs 1/tekanan. Catat bahwa kemiringan k tetap.
Volume dan temperatur
Setelah lebih dari satu abad penemuan Boyle ilmuwan mulai tertarik pada hubungan antara volume dan temperatur gas. Mungkin karena balon termal menjadi topik pembicaraan di kotakota waktu itu. Kimiawan Perancis Jacques Alexandre César Charles (1746-1823), seorang navigator balon yang terkenal pada waktu itu, mengenali bahwa, pada tekanan tetap, volume gas akan meningkat bila temperaturnya dinaikkan. Hubungan ini disebut dengan hukum Charles, walaupun datanya sebenarnya tidak kuantitatif. Gay-Lussac lah yang kemudian memplotkan volume gas terhadap temperatur dan mendapatkan garis lurus (Gambar 6.2). Karena alasan ini hukum Charles sering dinamakan hukum Gay-Lussac. Baik hukum Charles dan hukum Gay-Lussac kira-kira diikuti oleh semua gas selama tidak terjadi pengembunan.
Pembahasan menarik dapat dilakukan dengan hukum Charles. Dengan mengekstrapolasikan plot volume gas terhadap temperatur, volumes menjadi nol pada temperatur tertentu. Menarik bahwa temperatur saat volumenya menjadi nol sekiatar -273°C (nilai tepatnya adalah -273.2 °C) untuk semua gas. Ini mengindikasikan bahwa pada tekanan tetap, dua garis lurus yang didapatkan dari pengeplotan volume V1 dan V2 dua gas 1 dan 2 terhadap temperatur akan berpotongan di V = 0.
Fisikawan Inggris Lord Kelvin (William Thomson (1824-1907)) megusulkan pada temperatur ini temperatur molekul gas menjadi setara dengan molekul tanpa gerakan dan dengan demikian volumenya menjadi dapat diabaikan dibandingkan dengan volumenya pada temperatur kamar, dan ia mengusulkan skala temperatur baru, skala temperatur Kelvin, yang didefinisikan dengan persamaan berikut.
273,2 + °C = K (2)
Kini temperatur Kelvin K disebut dengan temperatur absolut, dan 0 K disebut dengan titik nol absolut. Dengan menggunakan skala temperatur absolut, hukum Charles dapat diungkapkan dengan persamaan sederhana
V = bT (K) (3)
dengan b adalah konstanta yang tidak bergantung jenis gas.
Menurut Kelvin, temperatur adalah ukuran gerakan molekular. Dari sudut pandang ini, nol absolut khususnya menarik karena pada temperatur ini, gerakan molekular gas akan berhenti. Nol absolut tidak pernah dicapai dengan percobaan. Temperatur terendah yang pernah dicapai adalah sekitar 0,000001 K.
Avogadro menyatakan bahwa gas-gas bervolume sama, pada temperatur dan tekanan yang sama, akan mengandung jumlah molekul yang sama (hukum Avogadro; Bab 1.2(b)). Hal ini sama dengan menyatakan bahwa volume real gas apapun sangat kecil dibandingkan dengan volume yang ditempatinya. Bila anggapan ini benar, volume gas sebanding dengan jumlah molekul gas dalam ruang tersebut. Jadi, massa relatif, yakni massa molekul atau massa atom gas, dengan mudah didapat.
d. Persamaan gas ideal
Esensi ketiga hukum gas di atas dirangkumkan di bawah ini. Menurut tiga hukum ini, hubungan antara temperatur T, tekanan P dan volume V sejumlah n mol gas dengan terlihat.
Tiga hukum Gas
Hukum Boyle: V = a/P (pada T, n tetap)
Hukum Charles: V = b.T (pada P, n tetap)
Hukum Avogadro: V = c.n (pada T, P tetap)
Jadi, V sebanding dengan T dan n, dan berbanding terbalik pada P. Hubungan ini dapat digabungkan menjadi satu persamaan:
V = RTn/P (4)
atau
PV = nRT (5)
R adalah tetapan baru. Persamaan di atas disebut dengan persamaan keadaan gas ideal atau lebih sederhana persamaan gas ideal.
Nilai R bila n = 1 disebut dengan konstanta gas, yang merupakan satu dari konstanta fundamental fisika. Nilai R beragam bergantung pada satuan yang digunakan. Dalam sistem metrik, R = 8,2056 x10–2 dm3 atm mol-1 K-1. Kini, nilai R = 8,3145 J mol-1 K-1 lebih sering digunakan.
e. Hukum tekanan parsial
Dalam banyak kasus Anda tidak akan berhadapan dengan gas murni tetapi dengan campuran gas yang mengandung dua atau lebih gas. Dalton tertarik dengan masalah kelembaban dan dengan demikian tertarik pada udara basah, yakni campuran udara dengan uap air. Ia menurunkan hubungan berikut dengan menganggap masing-masing gas dalam campuran berperilaku independen satu sama lain.
Anggap satu campuran dua jenis gas A (nA mol) dan B (nB mol) memiliki volume V pada temperatur T. Persamaan berikut dapat diberikan untuk masing-masing gas.
pA = nART/V (6)
pB = nBRT/V (7)
pA dan pB disebut dengan tekanan parsial gas A dan gas B. Tekanan parsial adalah tekanan yang akan diberikan oleh gas tertentu dalam campuran seandainya gas tersebut sepenuhnya mengisi wadah.
Dalton meyatakan hukum tekanan parsial yang menyatakan tekanan total P gas sama dengan jumlah tekanan parsial kedua gas. Jadi,
P = pA + pB = (nA + nB)RT/V (8)
Hukum ini mengindikasikan bahwa dalam campuran gas masing-masing komponen memberikan tekanan yang independen satu sama lain. Walaupun ada beberapa gas dalam wadah yang sama, tekanan yang diberikan masing-masing tidak dipengaruhi oleh kehadiran gas lain.
Bila fraksi molar gas A, xA, dalam campuran xA = nA/(nA + nB), maka pA dapat juga dinyatakan dengan xA.
pA = [nA/(nA + nB)]P (9)
Dengan kata lain, tekanan parsial setiap komponen gas adalah hasil kali fraksi mol, xA, dan tekanan total P.
Tekanan uap jenuh (atau dengan singkat disebut tekanan jenuh) air disefinisikan sebagai tekanan parsial maksimum yang dapat diberikan oleh uap air pada temperatur tertentu dalam campuran air dan uap air. Bila terdapat lebih banyak uap air, semua air tidak dapat bertahan di uap dan sebagian akan mengembun.

Tidak ada komentar:

Posting Komentar