Sabtu, 06 Juni 2015

TEORI DASAR PNEUMATIC



1.      Pneumatik (bahasa Yunani: πνευματικός, pneumatikos) berasal dari kata dasar "pneu" yang berarti udara tekan dan "matik" yang berarti ilmu atau hal-hal yang berhubungan dengan sesuatu; sehingga arti lengkap pnumatik adalah ilmu/hal-hal yang berhubungan dengan udara bertekanan.
Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Perkataan pneumatik berasal bahasa Yunani “ pneuma “ yang berarti “napas” atau “udara”. Jadi pneumatik berarti terisi udara atau digerakkan oleh udara mampat. Pneumatik merupakan cabang teori aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai dan sebagainya, tetapi juga aksi dan penggunaan udara mampat.

Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).




Komponen-komponen Pneumatik

Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja

Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)

Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)

1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).

Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.

1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.

b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.

c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.

d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).

e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.

f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.

g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.

h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.

i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.

j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.

k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.

l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.

m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).

n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).

o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)

p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.

q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)

r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.

s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.

1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.

b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)

c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.

d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).

e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.

f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.

g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.

h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.

i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.

j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.

k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)

1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
 (Sumber Drs. Sudaryono, VEDC Malang)
(InsyaAllah DIsambung lagi nanti. mohon maaf jika ada kesalahan).

Pengertian Dan Fungsi Pneumatik

Pengertian Dan Fungsi Pneumatik 
Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbang-an. Orang pertama yang dikenal dengan pasti telah menggunakan alat pneumatik adalah orang Yunani bernama Ktesibio. Dengan demikian istilah pneumatik berasal dari Yunani kuno yaitu pneuma yang artinya hembusan (tiupan). Bahkan dari ilmu filsafat atau secara philosophi istilah pneuma dapat diartikan sebagai nyawa. Dengan kata lain pneumatik berarti mempelajari tentang gerakan angin (udara) yang dapat dimanfaatkan untuk menghasilkan tenaga dan kecepatan. (Drs. Suyanto, M.Pd, M.T, 2003 : 1)

Pneumatik merupakan cabang teoritis aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai (device) dan sebagainya, tetapi juga aksi dan penggunaan udara mampat. Udara yang dimampatkan adalah udara yang diambil dari udara lingkungan yang kemudian ditiupkan secara paksa ke dalam tempat yang ukurannya relatif kecil.

Pneumatik dalam pelaksanaan teknik udara mampat dalam industri (dunia perusahaan) (dan khususnya dalam teknik mesin) merupakan ilmu pengetahuan dari semua proses mekanis dimana udara memindahkan suatu gaya atau suatu gerakan. Dalam pengertian yang lebih sempit pneumatik dapat diartikan sebagai teknik udara mampat (compressed air technology). Sedangkan dalam pengertian teknik pneumatik meliputi : alat-alat penggerakan, pengukur-an, pengaturan, pengendalian, penghubungan dan perentangan yang meminjam gaya dan penggeraknya dari udara mampat. Dalam penggunaan sistem pneumatik semuanya menggunakan udara sebagai fluida kerja dalam arti udara mampat sebagai pendukung, pengangkut, dan pemberi tenaga.

Adapun ciri-ciri dari para perangkat sistem pneumatik yang tidak dipunyai oleh sistem alat yang lain, adalah sebagai berikut :
1. Sistem pengempaan, yaitu udara disedot atau diisap dari atmosphere kemudian dimampatkan (dikompresi) sampai batas tekanan kerja tertentu (sesuai dengan yang diinginkan). Dimana selama terjadinya kompresi ini suhu udara menjadi naik.
2. Pendinginan dan penyimpanan, yaitu udara hasil kempaan yang naik suhunya harus didinginkan dan disimpan dalam keadaan bertekanan sampai ke obyek yang diperlukan.
3. Ekspansi (pengembangan), yaitu udara diperbolehkan untuk berekspansi dan melakukan kerja ketika diperlukan.
4. Pembuangan, yaitu udara hasil ekspansi kemudian dibebaskan lagi ke atmosphere (dibuang).

Kelebihan dan Kekurangan Pneumatik
Kelebihan dari alat penumatik yang sangat menonjol adalah karena udara dapat mengembang dengan begitu kuat dan cepat di ruangan yang sempit dalam waktu yang relatif singkat. Berdasarkan itu maka peralatan pneumatik banyak digunakan di indistri-industri dan pabrik-pabrik. Juga karena beberapa bukti yang nyata bahwa dalam berbagai masalah untuk otomatisasi tidak ada media lain yang dapat dipakai secara lebih mudah dan ekonomis.

Selain dari kelebihan di atas, alat pneumatik juga mempunyai kelebihan-kelebihan lainnya sehingga alat pneumatik seringkali diutamakan dibandingkan alat-alat yang lain. Kelebihan-kelebihan itu antara lain bisa dilihat dari: (Thomas Krist, 1993 : 6-8) (Krist,T, 1993)

1. Fluida kerja yang mudah diperoleh dan mudah ditransfer
a. Udara dimana saja tersedia dalam jumlah yang tak terhingga.
b. Saluran-saluran balik tidak diperlukan, karena udara bekas (udara yang telah memuai dan telah menyerahkan energinya) dapat dibuang bebas.

2. Dapat disimpan dengan baik.
a. Sumber udara mampat (kompresor) hanya memproduksi udara mampat kalau udara itu memang digunakan, jadi kompresor tidak selalu bekerja.
b. Pengangkutan dan penyimpanan dari tangki-tangki penampungan juga dimungkinkan.

3. Bersih dan kering.
a. Udara mampat adalah bersih, jadi kalau ada kebocoran pada saluran pipa benda-benda kerja ataupun bahan-bahan tidak akan menjadi kotor.
b. Udara mampat adalah kering, jadi kalau ada kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik (stain) minyak dan sebagainya.

4. Tidak peka terhadap suhu.
a. Udara bersih dapat digunakan sepenuhnya pada suhu-suhu tinggi dan pada nilai-nilai yang rendah.
b. Udara mampat juga dapat digunakan di tempat-tempat yang sangat panas.
c. Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali.

5. Aman terhadap ledakan dan kebakaran.
a. Keamanan kerja serta produksi besar dari udara mampat tidak mengandung bahaya kebakaran maupun ledakan.
b. Alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas.

6. Kesederhanaan (mudah dipelihara)
a. Karena kontruksinya sangat sederhana, peralatan-peralatan udara mampat hampir tidak peka gangguan.
b. Konstruksinya yang sederhana menyebabkan waktu motase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat diperbaiki sendiri.
c. Komponen-komponennya dengan mudah dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.

7. Konstruksi kokoh.
Pada umumnya komponen pneumatik kostruksinya kokoh sehingga tahan terhadap gangguan dan perlakuan-perlakuan kasar.

Namun demikian, udara bertekanan dan peralatan pneumatik masih tetap juga mempunyai kelemahan-kelemahan. Kekurangan dari sistem pneumatik antara lain: (Thomas Krist, 1993 : 9-10) 

1. Gangguan suara (bising).
Udara yang ditiup keluar menyebabkan kebisingan (desisan) terutama dalam ruang-ruang kerja yang sangat mengganggu.

2. Mudah menguap (volatile).
Udara mampat mudah menguap (volatile). Terutama dalam jaringan udara-udara mampat yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak dan menyebabkan udara mampat mengalir keluar.

3. Bahaya pembekuan.
Pada waktu pemuaian (expansion) mendadak dan penurunan suhu yang berkaitan dengan pemuaian mendadak ini, dapat terjadi pembentukan es.

4. Gaya tekan terbatas.
Udara mampat hanya dapat membangkitkan gaya yang terbatas. Untuk gaya-gaya yang besar pada suatu tekanan bisa dalam jaringan, dan dibutuhkan diameter torak yang besar.

5. Biaya energi tinggi.
Biaya produksi udara mampat tinggi, oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus.

Prinsip Dasar Kerja Pneumatik
Sistem pneumatik adalah suatu sistem yang menggunakan udara sebagai media kerjanya, dimana untuk menghasilkan kerja tersebut udara dimampatkan terlebih dahulu. Sistem-sistem pneumatik terutama terdiri dari suatu kompresor udara atau perapat udara (sumber udara mampat), motor-motor udara mampat (pemakai-pemakai udara mampat) ditambah dengan bagian-bagian pengatur dan pengendali. Untuk lebih jelasnya berikut adalah gambar sistem pneumatik secara rinci.

Gambar Sistem Peumatik

Keterangan gambar:
1. Kompresor adalah peralatan yang dipergunakan untuk menghasilkan udara kempa, udara akan diserap dan dimampatkan oleh kompresor yang digerakkan oleh motor listrik.
2. After Cooler, salah satu alat yang digunakan untuk mendinginkan udara kempa dengan menggunaka air atau media lain yang dapat berfungsi sebagai pendingin udara kempa.
3. Main Line Air Filter, peralatan yang berfungsi untuk mengeleminir debu dan air serta kandungan minyak pada udara kempa.
4. Refrigerated Air Dryer, alat ini berfungsi untuk mengeringkan udara basah atau udara yang masih mengandung embun atau titk air, sehingga dapat menghasilkan udara kempa yang benar-benar kering.
5. Air Filter, alat ini dipergunakan untuk menyaring debu yang terbawa oleh air.
6. Air Pressure Reducing Valve, berfungsi untuk mereduksi udara kempa pada batas yang dikehendaki dan menjaga agar tetap konstan pada saat digunakan.
7. Air Lubricator, alat ini berfungsi untuk mensuplai pelumas kedalam udara kempa dengan menggunakan aliran udara sehingga peralatan dapat bekerja dengan halus dan bisa digunakan dalam jangka waktu yang panjang.
8. Air Silincer, berfungsi untuk mereduksi nozel yang timbul sampai pada batas yang aman.
9. Air Flow (Change Selenoide Valve), berfungsi untuk merubah(mengubah) aliran lkangsung dari kompresor dengan cara membuka atau menutup katup yang menerima singnal elektrik.
10. Speed Control Valve, berfungsi mengontrol kecepatan silinder dengan mengatur valve aliran dari udara kempa.
11. Air Cylinder, berfungsi untuk merubah energi udara kempa menjadi gaya yang efektif dan gerakan.

Untuk menstabilkan udara kempa, biasanya dibelakang kompresor disambungkan tangki penampung, sehingga tekanan udara yang keluar menjadi stabil, selain itu kompresor dapat dihemat kerjanya, karena hasil kerjanya dapat sewaktu-waktu dipergunakan tanpa dibangkitkan terlebih dahulu.

Instalasi pneumatik pada dasarnya terdiri dari perubah energi atau pengalihragaman energi. Arus energi melalui suatu instalasi pneumatik mengalir seperti pada bagan di bawah ini :

Gambar  Instalasi Pneumatik Sebagai Perubah Energi 

Dari bagan dapat dijelaskan bahwa :
1. Perubahan energi mekanik dari penggerak (misalnya motor listrik, diesel dan penggerak mekanis lainnya) menjadi energi pneumatik oleh kompresor udara (sumber udara mampat).

Energi pneumatik ini dapat dianggap sebagai energi potensial, energi kinetik fluida kerja atau pengangkut (udara mampat).

2. Perpindahan energi pneumatik oleh udara mampat yang mengalir dari kompresor melalui bagian pengatur atau pengendali (sorong, katup).
a. ke silinder yang bergerak bolak-balik.
b. ke motor-motor udara mampat yang berotasi (berputar).

3. Perubahan energi pneumatik menjadi energi mekanik oleh pemakai udara mampat (silinder atau motor udara mampat). Unsur-unsur pneumatik ini mengubah energi potensial dan energi kinetik dalam udara mampat menjadi energi mekanik yang akan menggerakkan penggerak-penggerak suatu mesin produksi (mesin perkakas, perkakas angkut, mesin produksi dan sebagainya).

Bagian pengatur dan pengendali berfungsi sebagai pembawa arus udara mampat menurut cara-cara yang telah ditetapkan untuk pemakaian-pemakaian udara mampat. Katup (dengan dudukan katup atau dengan sorongan) dapat mengatur tekanan dan kecepatan aliran.

Bagian Utama Sistem Pneumatik
Dalam sistem pneumatik terdapat beberapa komponen utama, yang sering disebut sebagai elemen kerja. Elemen kerja disini adalah suatu alat pneumatik yang digerakkan dan akan menghasilkan suatu kerja dan usaha, seperti gerak lurus, gerak putar, dan lain sebagainya. Umumnya disebut juga sebagai aktuator (actuator). Jadi prinsipnya udara betekanan yaitu udara kempaan yang sering juga disebut sebagai tenaga pneumatik dirubah menjadi gerakan lurus bolak-balik (straight line reciprocating) oleh silinder pneumatik dan gerakan putar (rotary) oleh motor pneumatik. Komponen-komponen atau elemen kerja yang terdapat dalam sistem pneumatik dalam sistem pneumatik, antara lain :

Silinder Pneumatik
Silinder pneumatik merupakan elemen kerja atau bagian pneumatik yang akan menghasilkan gerak lurus bolak-balik, baik gerak itu beraturan maupun yang dapat diatur. Berdasarkan prinsip kerjanya silinder pneumatik dapat dibedakan menjadi 2 yaitu :

1. Silinder kerja tunggal (single acting cylinder)
Silinder kerja tunggal digerakkan hanya satu sisi arah saja. Oleh karenanya hanya akan menghasilkan satu arah saja. Untuk gerak baliknya digunakan tenaga yang didapat dari suatu pegas yang telah terpasang di dalam silinder tersebut, sehingga besar kecepatannya tergantung dari pegas yang dipakai. Ukuran elemen ini biasanya dilihat dari besarnya diameter dan panjang langkahnya. Panjang langkah dari silinder kerja tunggal ini terbatas pada panjang pegas yang dipakai.

Ganbar silinder tunggal

Keterangan: 
1. Rumah silinder
2. Lubang masuk udara bertekanan
3. Piston
4. Batang piston
5. Pegas pengembali

1) Prinsip kerja
Dengan memberikan udara bertekan pada satu sisi permukaan piston, sisi yang lain terbuka ke atmosfir. Silinder hanya bisa memberikan gaya kerja satu arah. Gerakan piston kembali masuk diberikan oleh gaya pegas yang ada didalam silinder direncanakan hanya untuk mengembalikan silinder ke posisi awal.

2) Kegunaan
Menurut konstruksinya, silinder kerja tunggal dapat melaksanakan berbagai fungus gerakan:
a. Menjepit benda kerja
b. Pemotongan.
c. Pengepressan
d. penganggatan

3) Macam-Macam Silinder Kerja Tunggal

a. Silinder difragma
Kontruksi silinder diafragma adalah tidak adanya gerakan geser dan pergeseran sepanjang gerakannya sangat kecil sekali. Silinder ini banyak dipakai untuk gerakan langkah yang pendek seperti untuk penjepitan, penstempelan, dan pengangkatan.

b. Silinder rol diafragma
Konstruksi silinder rol diafragma adalah serupa dengan silinder diapragma. Jika udara bertekanan dimasukkan kedalam silinder, maka akan diterima oleh diapragma dan akan membuka gulungan sepanjang dinding bagian dalam silinder. Seterusnya akan menggerakkan batang torak ke depan (maju). Jenis silinder diapragma ini memungkinkan langkah batang torak menjadi jauh lebih panjang (bisa mencapai 50 mm sampai dengan 80 mm).

Silinder kerja ganda (double acting cylinder)
Berbeda dengan silinder kerja tunggal, elemen ini dapat digerakkan dari dua arah. Pada waktu langkah maju dan mundur dapat dipakai untuk kerja, sehingga dalam hal ini akan dapat digunakan semua langkah. Secara prinsip panjang langkah torak tidak sampai mendekati ujungnya. Sama halnya pada silinder kerja tunggal, pistonnya terbuat dari bahan fleksibel dan dipasang pada torak dari bahan logam.

Gambar silinder ganda

Keterangan: 
1) batang / rumah silinder.
2) saluran masuk. 
3) saluran keluar 
4) batang piston
5) seal
6) bearing
7) piston

Prinsip kerja
Dengan memberikan udara bertekanan pada satu sisi permukaan piston ( arah maju ) sedangkan arah yang lain (arah mundur) terbuka ke atmosfir, maka gaya diberikan pada sisi permukaan tersebut sehingga batang piston akan terdorong keluar sampai mencapai batas maksimun dan berhenti. . Gerakan silinder kembali masuk, diberikan oleh gaya pada sisi permukaan batang piston (arah mundur) dan sisi permukaan piston (arah maju) udaranya terbuka ke atmosfir.

Keuntungan silinder kerja ganda dapat dibebani pada kedua arah gerakan batang pistonnya. Ini memungkinkan pemasangannya lebih fleksibel. Gaya yang diberikan pada batang piston gerakan keluar lebih besar daripada gerakan masuk. Karena efektif permukaandikurangi pada sisi batang piston oleh luas permukaan batang piston 

Macam-Macam Silinder Kerja Ganda
Adapun macam-macam silinder kerja ganda sebagai berikut:

a. Silinder berbantalan pelindung (double acting cylinder with end positioning cushioning).
Yang dimaksud dengan silinder berbantalan pelindung (double acting cylinder with end positioning cushioning) adalah silinder pneumatik kerja ganda dengan bantalan di kedua ujung (akhir) langkah. Hal ini dimaksudkan sebagai pencegah kerusakan piston akibat tenaga yang cukup besar. Sebelum torak mencapai langkah maksimum bantalan piston secara langsung akan menghambat keluarnya udara, sehingga gerakan piston sudah akan diperlambat akibatnya tahanan udara di sisi yang lain.

b. Silinder tandem atau saling bergandengan.
Konstruksi ini mencakup dua silinder kerja ganda yang dirakit menjadi satu unit konstruksi. Melalui penataan seperti ini dan dengan masuknya piston secara bersamaan, gaya pada batang piston menjadi berlipat ganda. Silinder jenis ini dipasang disetiap tempat yang memerlukan gaya yang besar, tetapi diameter silinder turut menentukan.

Katup Pneumatik
Sistem kontrol pneumatik terdiri dari beberapa komponen sinyal dan bagian kerja. Komponen-komponen sinyal dan kontrol menggunakan rangkaian atau urutan-urutan kerja dari berbagai kerja yang disebut katup (valve ). Jadi katup pneumatik adalah perlengkapan pengontrolan atupun pengatur, baik untuk memulai (start) ataupun berhenti (stop). Arah aliran atau tekanan dari suatu perantara yang dibawa oleh kompresor dan disimpan dalam suatu bejana. (Drs. Suyanto, M.Pd, M.T,2003 : 40 ) (Suyanto,2003)

Pemasangan katup
Keandalan sebuah pengontrolan bertahap sangat bergantung pada pemasangan katup batas ( limit switch ) yang benar. Untuk semua perencanaan pemasangan katup batas harus bisa diatur posisi kedudukan dengan mudah agar supaya mendapatkan keserasian koordinasi gerakan silinder dalam urutan kontrol.

Penempatan Katup
Pemilihan katup yang cermat, penempatan yang benar adalah sebagai salah satu persyaratan lanjutan, untuk keandalan sifat pensakelaran harus bebas gangguan pengoperasiannya, hal ini memberikan kemudahan untuk mereparasi dan memelihara. Pemakaian ini pada katup-katup dalam bagian daya dan katup-katup dalam bagian kontrol.

Katup yang diaktifkan secara manual untuk sinyal masukan pada umumnya ditempatkan pada panel kontrol atau meja kontrol. Maka dari itu praktis dan tepat sekali untuk memakai katup-katup dengan pengaktifan yang bisa ditempatkan pada katup dasar. Variasi pengaktifan tersedia untuk macam yang luas dari fungsi masukan.

Penempatan katup kontrol harus bisa diambil dengan mudah untuk mereparasi, mengeluarkan atau memodifikasi kerjanya. Penomoran komponen dan pemakai indikator sebagai penunjuk untuk sinyal kontrol merupakan hal yang paling penting guna untuk mengurangi waktu tunda dan memudahkan pencarian kesalahan.

Katup-katup daya mempunyai tugas pengaktifan pneumatik untuk mengatur sesuai dengan urutan tahapan kontrol yang telah ditentukan. Persyaratan dasar untuk katup daya adalah untuk membolehkan membalik aliran udara ke silinder begitu sinyal kontrol telah diberikan. Katup daya sebaiknya ditempatkan sedekat mungkin dengan silinder. Agar supaya panjang saluran bisa diperpendek dan juga waktu pensakelaran seideal dan sependek mungkin . Katup daya bisa ditempatkan langsung ke pengatur. Sebagai keuntungan tambahan adalah bahwa penyambung, slang dan waktu pemasangan bisa dihemat.

Katup-katup Pneumatik secara garis besar dibagi menjadi 5 (lima) kelompok menurut fungsinya, yaitu: (Drs. Suyanto, M.Pd, M.T,2003 : 40 )

1) katup pengarah ( direction way valve )
Katup pengarah adalah perlengkapan yang menggunakan lubang-lubang saluran kecil yang akan dilewati oleh aliran udara bertekanan, tereutama untuk memulai (start) dan berhenti (stop) serta mengarahkan aliran itu.

2) Katup pengontrol aliran ( flow control valve )
Katup pengontrol aliran adalah peralatan pneumatic yang berfungsi sebagai pengatur dan pengendali aliran udara bertekanan (pengendali angin) khususnya udara yang harus masuk kedalam silinder-silinder pneumatik. Ada juga aliran angin tersebut harus di kontrol untuk peralatan pengendali katup-katup pneumatik.

3) Katup pengontrol dan pengatur tekanan (pressure control valve)
Katup pengontrol dan pengtur tekanan adalah bagian dari komponen pneumatik yang mempengaruhi tekanan atau dikontrol oleh besarnya tekanan.

Macam-macam katup ini ada 3 kategori, yaitu:
a) Katup pengatur tekanan (pressure regulating valve)
Katup ini berfungsi untuk menjaga tekanan supaya terjadi tekanan yang tetap (konstan). Aplikasi dari katup ini misalnya tekanan yang telah diatur (distel) pada manometer harus dipindahkan pada batas konstan terhadap elemen kerja atau penggerak walaupun tekanan yang disuplai berubah.

b) Katup pembatas tekanan (pressure limiting valve)
Katup ini digunakan utamanya sebagai katup pengaman. Kerja utamanya adalah mencegah tekanan udara yang berlebihan dari sistem pneumatik yang ada. Jika tekanan maksimum sudah tercapai pada bagian masuk dari katup, maka bagian keluar dari katup terbuka sehingga udara bertekana akan keluar ke atmosfer.

c) Katup rentenan atau katup rangkai (sequence valve) 
Prinsip kerja katup ini hampir sama dengan katup pembatas.

4) Katup penutup (shut-off valve)
Katup ini berfungsi sebagai pemberi atau pencegah aliran udara yang tak terbatas. Artinya, jika aliran udara harus dihentikan, maka katup akan bertindak. Tetapi jika di butuhkan aliran kecil, maka katup akan membuka sedikit saja. Pemakain sederhana adalah pada keran air.

5) Katup-katup kombinasi/gabungan (combination valve)
Katup kombinasi merupakan katup pneumatik yang tersusun sedemikian rupa hingga kerjanya menjadi sangat spesifik. Keberadaan katup-katup ini memang dirancang untuk maksud-maksud tertentu yang tentunya disesuaikan dengan kebutuhan operasi di segi otomatisasi.

Kompresor
kompresor adalah mesin untuk memampatkan udara atau gas, Kompresor udara biasanya mengisap udara dari atmosfir. Namun ada pula yang mengisap udara atau gas yang bertekanan lebih tinggi dari tekanan atmosfir. Dalam hal ini kompresor bekerja sebagai penguat (booster). Sebaliknya ada pula kompresor yang mengisap gas yang bertekanan lebih rendah dari pada tekanan atmosfir. 

Jenis-Jenis Kompresor
Adapun jenis-jenis kompresor terdiri dari dua kelompok, yaitu:
Kelompok pertama, adalah yang bekerja dengan prinsip pemindahan dimana udara dikompresi (dimampatkan) dan diisikannya kedalam suatu ruangan. Kemudian mengurangi atau memperkecil isi ruangan tersebut. Jenis ini disebut kompresor torak. ( reciprocating piston compressor, rotary piston compressor)

Kelompok kedua, adalah bekerja dengan prinsip aliran udara yaitu dengan cara menyedot udara masuk kedalam bagian suatu sisi dam memampatkannya dengan cara percepatan massa seperti pada prinsip sebuah turbin.

Selain jenis kompresor yang telah disebutkan diatas, kompresor juga diklasifikasikan berdasarkan konstruksinya, yaitu:
1) Klasifikasi berdasarkan jumlah tingkat kompresi:
- satu tingkat, dua tingkat ........banyak tingkat

2) Klasifikasi berdasarkan langkah kerja:
- kerja tunggal (single acting), kerja ganda (double acting)

3) Klasifikasi berdasarkan susunan silinder:
- mendatar, tegak,bentuk L, bentuk V, bentuk bintang

4) Klasifikasi berdasarkan cara pendinginan:
- pendinginan air, pendinginan udara

5) Klasifikasi berdasarkan transmisi gerak
- sabuk V, roda gigi

6) Klasifikasi berdasarkan penempatannya:
- permanen (stationary), dapat dipindah (portable)

7) Klasifikasi berdasarkan pelumasannya:
- pelumasan minyak, tanpa minyak

Penggerak Mula (Motor)
Yang dimaksud disini adalah tenaga penggerak utama (primer mover) dari kompresor. Hal ini terutama tergantung dari syarat-syarat cara kerja kompresor tersebut. Pada umumnya yang biasa dipakai sebagai penggerak kompreor untuk mendapatkan udara mampat adalah motor listrik atau motor bakar torak.

Jenis-jenis penggerak antara lain:

1. Motor listrik
Secara garis besar motor listrik diklasifikasikan menjadi dua, yaitu motor induksi dan motor sinkron, motor induksi mempunyai faktor daya dan efisiensi yang lebih rendah dari pada motor sinkron. Arus awal motor induksi juga sangat besar, namun motor induksi sampai 600 kW banyak dipakai karena harganya relative murah dan pemeliharaannya mudah.

Adapun motor sinkron mempunyai faktor daya dan efisiensi sangt tinggi, namun harganya mahal. Dengan demikian motor ini hanya dipakai bila diperlukan daya besar dimana pemakaian daya merupakan faktor yang sangat menentukan.

2. Motor bakar torak
Motor bakar torak digerakkan sebagai penggerak kompresor bila tidak tersedia sumber listrik di tempat pemasangan, atau bila kompresor tersebut merupakan kompresor portabel. Untuk daya kecil sampai 5,5 kW dapat dipakai motor bensin, dan untuk daya yang lebih besar dipakai motor diesel.

Bila dipakai motor listrik sebagai penggerak, maka transmisi yang dapat digunakan adalah sabuk-V, kopling tetap dan rotor terpadu. Bila dipakai motor torak dapat digunakan sabuk-V, kopling tetap atau kopling gesek

Penampung Udara Kempaan (receiver)
Udara yang diperoleh dari kompresor perlu adanya suatu pendinginan dan penyimpanan dalam keadaan bertekanan sebelum digunakan untuk sesuatu pekerjaan system. Sehingga fungsi dari penampung udara mampat tersebut adalah sebagai tempat pendinginan dan penyimpanan udara mampat yang naik suhunya setelah dikompresi oleh kompresor.

Penampung udara bertekanan ini juga berfungsi untuk menstabilkan pemakaian angin. Penampung udara bertekanan yang kebanyakan dipakai adalah tangki, karena tengki mempunyai sifat akan memperhalus fluktuasi tekanan dalam jaringan ketika udara dipakai oleh jaringan tersebut. Oleh karena itu, bagian dari uap lembab dalam udara dipisahkan, seperti air, akan secara langsung mengembun didasar tangki. Sedangkan ukuran dari penampung udara kempaaan tergantung pada:
a. Penghantar volume kompresor (debit kompresor)
b. Pemakaian udara
c. Jaringan
d. Perbedaan tekanan yang diijinkan dalam system.

Gambar Penampung udara bertekanan

Pressure gauge
Pressure gauge merupakan alat untuk memantau besarnya tekanan yang terjadi pada sistem pneumatik. Keberadaan pressure gauge dalam sistem pneumatik cukup vital karena dengan adanya pressure gauge seorang operator akan tahu berapa tekanan yang akan terjadi dalam sistem pneumatik ini

Tidak ada komentar:

Posting Komentar