Selasa, 02 Juni 2015

PENGGUNAAN, CARA KERJA DAN PRINSIP DASAR SYSTEM HYDRAULIC DI DUNIA INDUSTRI



SYSTEM HYDRAULIC
Pengertian   Hidrolik
Kata hidrolik berasal dari bahasa Inggris hydraulic yang berarti cairan atau minyak. Prinsip dari peralatan hidrolik memanfaatkan konsep tekanan, yaitu tekanan yang diberikan pada salah satu silinder akan diteruskan ke silinder yang lain., sesuai dengan hukum Pascal.
Peralatan hidrolik untuk memperbaiki bodi kendaraan memiliki ukuran yang sangat bervariasi, dari peralatan yang hanya memiliki kekuatan sekitar 1 ton, sampai dengan 50 ton.
Jenis yang digunakan disesuaikan dengan kerusakan yang terjadi.
Jenisnya juga beragam dan beberapa alat dapat saling dikombinasikan.
Untuk mendapatkan hasil yang maksimal, maka perlu diperhaikan prosedur perbaikan dengan alat hidrolik. 


Prinsip kerja hidrolik

Dalam penggunaan berbagai peralatan hidrolik, biasanya  kita sering menggunakan oli sebagai perantara untuk menyalurkan tekanan. Jadi, perbaikan bodi kendaraan memanfaatkan oli untuk membantu pekerjaan kita. Konsep dari hidrolik banyak digunakan pada pemakaian sistem rem kendaraan, dongkrak kendaraan, alat pengangkat mobil ketika dicuci, juga pada berbagai alat berat seperti back hoe, excavator dan lain sebagainya. 
Dalam perbaikan bodi kendaraan, baik kerusakan ringan maupun kerusakan berat, sering diperlukan peralatan hidrolik untuk memperbaiki kerusakan tersebut. Peralatan hidrolik yang sering digunakan adalah alat pengangkat mobil (car lift), dongkrak lantai, ram atau dongkrak tenaga serta alat-alat penarik dan penekan. 


Contoh peralatan hidrolik


Pengertian Sistem Hidrolik

1.          Pengertian Sistem Hidrolik

Sistem hidrolik merupakan suatu bentuk perubahan atau pemindahan daya dengan menggunakan media penghantar berupa fluida cair untuk memperoleh daya yang lebih besar dari daya awal yang dikeluarkan. Dimana fluida penghantar ini dinaikan tekanannya oleh pompa pembangkit tekanan yang kemudian diteruskan ke silinder kerja melalui pipa-pipa saluran dan katup-katup. Gerakan translasi batang piston dari silinder
kerja yang diakibatkan oleh tekanan fluida pada ruang silinder dimanfaatkan untuk gerak maju dan mundur.
Dasar- dasar Sistem Hidrolik
a. Hukum Pascal
Prinsip dasar sistem hidrolik berasal dari hukum pascal, dimana tekanan dalam fluida statis harus mempunyai sifat-sifat sebagai berikut:
1) Tekanan bekerja tegak lurus pada permukaan bidang.
2) Tekanan disetiap titik sama untuk semua arah.
3) Tekanan yang diberikan kesebagian fluida dalam tempat tertutup, merambat secara seragam ke bagian lain fluida.
Sebagai contoh : gambar dibawah memperlihatkan dua buah silinder berisi cairan yang dihubungkan dan mempunyai diameter berbeda. Apabila beban W diletakan disilinder kecil, tekanan P yang dihasilkan akan diteruskan kesilinder besar (P = W\a, beban dibagi
luas penampang silinder). Menurut hukum ini, pertambahan tekanan sebanding denganluas rasio penampang silinder kecil dan silinder besar, atau W = PA = wA/a.



2.         Komponen beserta Fungsi & Simbol
Sistem hidrolik ini didukung oleh 3 unit komponen utama, yaitu:
1. Unit Tenaga, berfungsi sebagai sumber tenaga dengan liquid/ minyak hidrolik
Pada sistem ini, unit tenaga terdiri atas:
  • Penggerak mula yang berupa motor listrik atau motor bakar
  • Pompa hidrolik, putaran dari poros penggerak mula memutar pompa hidrolik sehingga pompa hidrolik bekerja
  • Tangki hidrolik, berfungsi sebagai wadah atau penampang cairan hidrolik
  • Kelengkapan (accessories), seperti : pressure gauge, gelas penduga, relief valve
2. Unit Penggerak (Actuator), berfungsi untuk mengubah tenaga fluida menjadi tenaga mekanik
Hidrolik actuator dapat dibedakan menjadi  dua macam yakni:
  • Penggerak lurus (linier Actuator) : silinder hidrolik
  • Penggerak putar : motor hidrolik, rotary actuator
3. Unit Pengatur, berfungsi sebagai pengatur gerak sistem hidrolik.
Unit ini biasanya diwujudkan dalam bentuk katup atau valve yang macam-macamnya akan dibahas berikut ini.
3.1 Katup Pengarah (Directional Control Valve = DCV )
    Katup (Valve) adalah suatu alat yang menerima perintah dari luar untuk melepas, menghentikan atau mengarahkan fluida yang melalui katup tersebut.
Contoh jenis katup pengarah : Katup 4/3 Penggerak lever, Katup pengarah dengan piring putar, katup dengan pegas bias.


3.2 Macam-macam Katup Pengarah Khusus
1) Check Valve adalah katup satu arah, berfungsi sebagai pengarah aliran dan juga sebagai pressure control (pengontrol tekanan)
2) Pilot Operated Check Valve, Katup ini dirancang untuk aliran cairan hidrolik yang dapat mengalir bebas pada satu arah dan menutup pada arah lawannya, kecuali ada tekanan cairan yang dapat membukanya.
3) Katup Pengatur Tekanan, Tekanan cairan hidrolik diatur untuk berbagai tujuan misalnya untuk membatasi tekanan operasional dalam sistem hidrolik, untuk mengatur tekanan agar penggerak hidrolik dapat bekerja secara berurutan, untuk mengurangi tekanan yang mengalir dalam saluran tertentu menjadi kecil.
Macam-macam Katup pengatur tekanan adalah:
a. Relief Valve, digunakan untuk mengatur tekanan yang bekerja pada sistem dan juga mencegah terjadinya beban lebih atau tekanan yang melebihi kemampuan rangkaian hidrolik.
b. Sequence Valve, berfungsi untuk mengatur tekanan untuk mengurutkan pekerjaan yaitu menggerakkan silinder hidrolik yang satu kemudian baru yang lain.
c. Pressure reducing valve, berfungsi untuk menurunkan tekanan fluida yang mengalir pada saluran kerja karena penggerak yang akan menerimanya didesain dengan tekanan yang lebih rendah.
4) Flow Control Valve, katup ini digunakan untuk mengatur volume aliran yang berarti mengatur kecepatan gerak actuator (piston).
Fungsi katup ini adalah sebagai berikut:
·         untuk membatasi kecepatan maksimum gerakan piston atau motor hidrolik
·         Untuk membatasi daya yang bekerja pada sistem
·         Untuk menyeimbangkan aliran yang mengalir pada cabang-cabang rangkaian.
Macam-macam dari Flow Control Valve :
·         Fixed flow control yaitu: apabila pengaturan aliran tidak dapat berubah-ubah yaitu melalui fixed orifice.
·         Variable flow control  yaitu apabila pengaturan aliran dapat berubah-ubah sesuai dengan keperluan
·         Flow control yang dilengkapi dengan check valve
·         Flow control yang dilengkapi dengan relief valve guna menyeimbangkan tekanan
Menggambar Rancangan Rangkaian Hidrolik
Setelah kita pelajari komponen-komponen sistem hidrolik secara detail dan juga telah kita pelajari berbagai simbol dari setiap komponen sebagai bahasan tenaga fluida, demikian juga telah kita pelajari cara membaca diagram rangkaian (circuit diagram) maka akan kita mulai dengan cara mendesain (merancang) suatu rangkaian sesuai dengan yang kita kehendaki bila telah tersedia komponen-komponen sistem hidrolik.
Hal-hal yang perlu diperhatikan dalam merancang rangkaian hidrolik adalah:
·         Tujuan penggunaan rangkaian
·         Ketersediaan komponen
·         Konduktor dan konektor yang digunakan macam apa
·         Tekanan kerja sistem hidrolik berapa
Rancangan rangkaian hidrolik perlu dituangkan dalam bentuk diagram rangkaian hidrolik dengan menggunakan simbol-simbol grafik, dengan bantuan simbol-simbol grafik para desainer dapat menuangkan pemikiran lebih mudah, lebih tenang sehingga dapat berkreasi SEOptimal mungkin.
Cara membuat diagram rangkaian biasanya dengan membuat tata letak komponen sebagai berikut:
·         Actuator diletakkan pada gambar yang paling atas
·         Unit pengatur diletakkan di bawahnya
·         Unit tenaga diletakkan pada bagian paling bawah
·         Setelah simbol-simbol komponen lengkap dalam lay out (tata letak) barulah digambar garis-garis penghubung sebagai gambar konduktor dengan garis-garis sesuai dengan macam konduktor yang digunakan




3.         Contoh Penggunaan Hidrolik
Dianggap kecepatan tinggi, beban berat, beban berat dan rem cepat kendaraan berat, skema dari sistem hidrolik rem kekuatan penuh dikendalikan oleh katup rem dual diadopsi dalam sistem rem yang dapat mencapai rem kemudi dan rem untuk kendaraan muncul rekayasa. Model matematika nonlinear komponen untuk katup rem, silinder rem, pipa penghubung dan sebagainya ditetapkan dengan sistem daya rem hidrolik penuh. Pipa ganda kemudi dan rem rem parkir dibahas oleh eksperimen simulasi berdasarkan Matlab / Simulink. Hasil simulasi membuktikan rasionalitas untuk mengembangkan pipa ganda untuk sistem rem.

4. Perawatan
Untuk benar memelihara peralatan produksi, banyak hal harus terjadi. Yang pertama adalah untuk memastikan peralatan bekerja di lingkungan yang mungkin terbersih untuk daerah tanaman. Banyak masalah di industri dapat dikoreksi dengan mengikuti pepatah lama yang tentang kebersihan. Munculnya daerah sekitar sebagian besar peralatan produksi adalah indikator yang baik kebijakan pemeliharaan perusahaan. Hal ini juga umumnya merupakan indikasi yang baik dari kondisi keseluruhan dari peralatan itu sendiri. Hal ini terutama berlaku peralatan hidrolik.
Kotoran, minyak, dan sampah di sekitar peralatan produksi menyembunyikan banyak masalah selain menjadi bahaya keamanan. Karena pentingnya, keamanan dalam area kerja menyajikan serangkaian masalah yang tidak boleh diabaikan. Tidak hanya pondasi dan pegangan yakin masalah, tapi kebocoran dan bagian gagal tersembunyi. Bergerak atau mengangkat peralatan berbahaya. Pekerjaan menjadi lebih menyenangkan sehingga ketika lingkungan kerja yang menyenangkan atau tidak aman.
Ketika kotoran masuk ke peralatan, peralatan terutama hidrolik, hal itu menyebabkan operasi yang tidak menentu yang mengarah untuk memakai dipercepat dan kegagalan sistem awal. Untuk memperbaiki situasi ini, peralatan dan sekitarnya harus bersih, termasuk sistem hidrolik.
Pemeliharaan rencana
Setelah merekam kondisi peralatan dan mengidentifikasi dan mencatat kebocoran dan masalah lainnya, lay out rencana perawatan. Selain jadwal kerja, rencana ini harus mencakup tenaga kerja, bagian, dan bantuan dari luar diperlukan.
Sebuah rencana perawatan umum meliputi item berikut. Pertama, bersihkan daerah tersebut kemudian menguji peralatan untuk kebocoran. Carilah bagian yang rusak atau patah, mendengarkan suara-suara aneh atau tidak biasa, dan, secara umum, melihat apakah peralatan beroperasi pada spesifikasi desain. Para produsen peralatan dapat menyediakan operasi dan pemeliharaan manual mengenai peralatan. Mempelajari sampel minyak diambil sebelumnya dan memutuskan apa, jika ada, komponen memerlukan perbaikan atau penggantian. Rencana perawatan juga mencakup bagian, tenaga kerja (baik di-rumah dan kontrak) dan jadwal.
Periksa penukar panas. Jika mereka berpendingin udara jenis, bersih dan memeriksa mereka untuk sirip rusak dan tabung. Juga, mencari penghalang di jalan aliran udara. Periksa penukar panas untuk kebocoran setelah mereka telah dibersihkan dan bertekanan. Periksa sumbatan dan fitting yang rusak yang mungkin membatasi aliran udara hidrolik atau pendinginan. Jika memungkinkan, periksa jalur aliran internal untuk penyumbatan atau pembatasan. Sebuah air didinginkan penukar panas mungkin harus dikirim keluar untuk membersihkan, namun dapat tekanan dan aliran-diuji di rumah.
Selanjutnya memeriksa kondisi dan keselarasan dari motor, pompa, dan kopling. Ini termasuk hati-hati melihat pompa, motor, dan kopling rakitan untuk masalah yang jelas. Buatlah beberapa pemeriksaan listrik dan keselarasan cepat. Memeriksa kondisi kopling dan keselarasan per rekomendasi produsen sementara mengingat bahwa beberapa kopling membutuhkan lemak. Periksa baut ditentukan dalam Holddown Timers dan kaki dari kedua motor dan pompa untuk memastikan mereka berada dalam kondisi baik dan bebas dari retak. Pastikan baut ditentukan dalam Holddown Timers berada di tempat dan benar torqued. Periksa majelis kipas pendingin di kedua motor dan penukar panas untuk kebersihan dan kondisi operasi umum. Periksa pompa untuk kebocoran, peralatan rusak atau rusak, dan hal lain yang mempengaruhi operasi. Sering pompa dan motor hidrolik dapat dibangun kembali di tempat. Juga, banyak segel dapat diganti tanpa mengeluarkan unit dari mounting nya.
Ketika memeriksa kondisi selang, mencari retak atau tanda-tanda penuaan. Ini merupakan indikasi bahwa selang dalam pelayanan telah terlalu lama atau daerah dekat selang terlalu panas. Jika suhu operasi atau lingkungan yang terlalu tinggi, maka pertimbangkan kelas upgrade dari selang.
Periksa kelengkapan selang untuk kerusakan dan kebocoran. Dalam kasus pipa logam, mencari Crimping atau kerusakan mekanis lainnya. Selang dan fitting sering melakukan lebih dari mereka yang dirancang untuk melakukan - jangan menggantung hal-hal pada mereka atau menggunakan mereka sebagai pegangan dan langkah.
Untuk kedua selang dan tabung, pastikan bahwa mereka memiliki izin yang cukup untuk mencegah gesekan pada bagian lain. Juga, pastikan bahwa tabung dan selang berjalan mengikuti praktek instalasi standar. Selang cenderung dibiarkan dalam pelayanan lebih lama daripada mereka harus dan mereka menjadi rapuh. Hal ini menyebabkan kebocoran dan kegagalan bencana. Setelah memperbaiki atau mengganti yang rusak selang, tabung, dan alat kelengkapan, melihat apakah mereka dapat dilindungi oleh rerouting mereka atau memindahkan mereka keluar dari jalan.
Periksa kebocoran katup kontrol pada sendi penyegelan atau permukaan termasuk subplates atau topi akhir di mana poros kendali datang melalui badan-badan katup. Mereka harus diperiksa untuk kondisi operasi umum mereka. Banyak katup dapat dibangun kembali di tempat semudah menggantinya. Hal ini umumnya benar katup yang lebih besar, baik menyimpan waktu dan uang.
Banyak hal yang menyebabkan kegagalan katup kontrol. Yang pertama biasanya oli kotor dan kebersihan peralatan. Minyak kotor juga merupakan penyebab paling umum dari kegagalan katup. Setelah pembongkaran katup, bersih dan memeriksanya. Memeriksa dan mengganti bagian-bagian aus, jika perlu. Selalu mengganti segel atau gasket. Produsen dapat memberikan dimensi yang diperlukan dan nomor bagian. Bagian ini memakai termasuk pegas, segel, dan bagian-bagian yang direkomendasikan oleh produsen.
Ketika pemasangan kembali, pastikan area kerja yang bersih. Hal ini juga penting bahwa komponen sendiri menjadi bersih. Jangan memperkenalkan kembali kotoran ke dalam katup sebagai melakukannya menyebabkan operasi yang tidak menentu dan kehidupan katup berkurang. Ikuti petunjuk pembuatan untuk urutan perakitan.
Periksa kondisi aktuator, akumulator, dan komponen hidrolik lainnya yang digunakan dalam sistem. Carilah kebocoran, peralatan rusak atau rusak, bagian-bagian tubuh yang rusak, misalignment dan chaffing. Kebocoran biasanya terjadi pada permukaan poros dan segel penyegelan. Banyak kebocoran segel disebabkan oleh segel kering atau segel rusak oleh lingkungan kerja yang kotor. Sekali lagi, minyak kotor abrades segel poros dan poros permukaan.
Seiring waktu, bahkan dengan cincin wiper dalam perakitan segel poros, berharap untuk membawa kotoran kembali ke sistem hidrolik yang akan masuk ke dalam segel untuk menyebabkan kerusakan poros. Kering-out segel juga menyebabkan kerusakan pada permukaan penyegelan bahwa mereka bergerak melawan. Sebuah penyebab utama kebocoran seal poros adalah lingkungan yang kotor (baik minyak kotor dan kotoran pada batang piston) dan misalignment dari actuator. Banyak terjadi kebocoran pas karena masalah izin memungkinkan mereka untuk memukul atau menggosok terhadap sesuatu. Seperti Anda mungkin tahu, aktuator banyak dapat dibangun kembali di tempat.
Setelah sistem telah dibersihkan dan diperbaiki, pertimbangkan penyaringan minyak. Gunakan sistem filtrasi benar ukuran dengan kapasitas yang konsisten dengan sistem yang baru saja dibersihkan. Sistem pemantauan menjamin bahwa minyak tetap bersih.
Sebelum sistem ini ditempatkan kembali ke layanan penuh, jalankan di bawah tekanan untuk menjamin bagian minyak dan internal sistem telah benar memerah. Hal ini memungkinkan membersihkan seluruh sistem hidrolik. Ambil sampel minyak pengujian baru dan mengkonfirmasi kondisi minyak disaring. Mengambil perawatan yang tepat minyak menyimpannya tersisa bersih. Ingat, lebih murah untuk menjaga minyak tetap bersih daripada mengubahnya, membersihkan sistem, dan membuang minyak melalui aliran limbah pabrik. Hal ini lebih murah untuk menjaga minyak tetap bersih daripada membayar harga untuk downtime, kehilangan produksi, dan menghilang keuntungan. Ia membayar untuk tetap berfungsi aset Anda.


Pengertian dan Perbedaan Sistem Hidrolik dan Pneumatik

·   
(Pengertian dan Perbedaan Sistem Hidrolik dan Pneumatik) – Hidrolik adalah suatu sistem yang memanfaatkan tekanan fluida sebagai power (sumber tenaga) pada sebuah mekanisme. Pada sistem hidrolik, tekanan fluida merupakan tenaga penggerak sistem.
Pada kebanyakan aplikasi, sistem hidrolik banyak digunakan seperti memindahkan beban yang berat, sebagai alat penekan dan pengangkat. Dalam industri banyak ditemui penggunaan sistem hidrolik pada alat-alat berat, seperti truk pengangkat (dump truck), mesin moulding, mesin press, forklift, crane, dan lain-lain.
Pada saat ini penggunaan sistem hidrolik sudah dilengkapi dengan berbagai peralatan kontrol yang menunjang pengendalian dan ketepatan (presisi) dalam penggunaannya.
Hidrolik adalah suatu sistem yang memanfaatkan tekanan fluida sebagai power (sumber tenaga) pada sebuah mekanisme. Karena itu, pada sistem hidrolik dibutuhkan power unit untuk membuat fluida bertekanan. Kemudian fluida tersebut dialirkan sesuai dengan kebutuhan atau mekanisme yang diinginkan.
Perbedaan antara sistem hidrolik dan pneumatik adalah sebagai berikut:
  • Pada fluida kerja, sistem hidrolik menggunakan fluida cair bertekanan sedangkan pada pneumatik menggunakan fluida gas bertekanan
  • Sistem pneumatik umumnya menggunakan tekanan 4 – 7 kgf/cm2 dan menghasilkan output yang lebih kecil daripada sirkuit hidrolik, sehingga cocok untuk pekerjaan ringan
  • Sifat compressibility (mampu tekan) dari sirkuit hidrolik lebih besar daripada sirkuit pneumatik
  • Udara bertekanan memiliki resistansi (tahanan) kecil terhadap aliran dan dapat dijalankan dengan lebih tepat daripada tenaga hidrolik
  • Sistem hidrolik sensitif terhadap kebocoran minyak, api dan kontaminasi. Sedangkan udara bertekanan tidak mempunyai masalah seperti itu jika sirkuitnya dirancang dengan baik
  • Udara bertekanan dihasilkan oleh kompresor yang umumnya dimiliki oleh pabrik, tetapi sistem hidrolik membutuhkan pompa
  • Batas temperatur yang mampu diterima oleh peralatan hidrolik 60 – 70°C, sedangkan untuk pneumatik dapat dijalankan hingga 180°C
Kelebihan dari sistem hidrolik adalah:
Memiliki tekanan kerja yang relatif lebih besar daripada sistem pneumatik, sehingga cocok untuk pekerjaan-pekerjaan berat
Kekurangan dari sistem hidrolik adalah:
Fluida dari sirkuit yang tercemar oleh kotoran akan menyebabkan peralatan hidrolik menjadi lemah dan cepat rusak
Konstruksinya yang rumit dengan biaya yang mahal, serta kesulitan dalam pemeliharaan dan operasi
Fluida kerja tidak dapat bertahan pada temperatur operasi yang lebih tinggi
Contoh-contoh penggunaan sistem hidrolik:
Dongkrak hidrolik
Hydrostatic transmission, untuk menggerakkan peralatan konstruksi, kendaraan berat, mesin pertanian dan mentransmisikan tenaga ke aktuator tipe rotasi
Komponen yang digunakan pada sistem hidrolik:
  • Piston sebagai aktuator
  • Pompa mengubah energi mekanis dari putaran poros menjadi energi fluida dan juga untuk menaikkan fluida kerja
  • Tangki menstabilkan sirkulasi tekanan minyak yang dikeluarkan pompa, menyimpan fluida bertekanan, menghindari pressure drop apabila sejumlah besar minyak dipakai dalam waktu singkat
  • Manometer (pressure gauge): mengukur tekanan kerja fluida pada saat piston melakukan langkah maju dan langkah mundur
  • Hose
  • Hose Couplers (penyambung hose)
Directional control valve (flow control valve):
Fungsi Katup Kendali Arah adalah untuk saling menghubungkan jalur-jalur hidrolik yang bervariasi satu terhadap yang lain, untuk menghubunghkan hubungan satu terhadap yang lain.
Sumber : Modul Praktikum Mesin Dasar


Tidak ada komentar:

Posting Komentar